Course Code: 23CS0540 ## SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u> Subject with Code: NATURAL LANGUAGE PROCESSING (23CS0540) Course & Branch: B.Tech – CSM & CAI **Regulation:** R23 **Year & Sem:** III - B.Tech & I-Sem #### UNIT - I ### **Introduction to Natural language** | | a) | What is natural language Processing? | [L1][CO1] | [2M] | |----|--|---|-----------|-------| | | b) | Define intrinsic and extrinsic evaluation in NLP. | [L1][CO1] | [2M] | | 1 | c) | What are the basic units of syntax? | [L1][CO1] | [2M] | | | d) | What is morphology? | [L1][CO1] | [2M] | | | e) | Define Natural Language Understanding. | [L1][CO1] | [2M] | | 2 | a) | Explain about The Study of Language in natural language processing. | [L2][CO1] | [6M] | | | b) | Classify history of NLP | [L4][CO1] | [6M] | | 3 | a) | Prioritize the Key Aspects of Language Study in NLP | [L5][CO1] | [6M] | | 3 | b) | Define natural language processing, list the applications of NLP | [L1][CO1] | [6M] | | 4 | Justify any six Applications of NLP | | [L6][CO1] | [12M] | | 5 | Classify Evaluating Language Understanding Systems | | | [12M] | | _ | a) | Illustrate intrinsic evaluation and extrinsic evaluation in language evaluation | [L3][CO1] | [6M] | | 6 | b) | Differentiate intrinsic evaluation and extrinsic evaluation | [L4][CO1] | [6M] | | 7 | a) | Devise Different Levels of Language Analysis in NLP | [L4][CO1] | [6M] | | ' | b) | Describe Phonology and morphology in Levels of Language Analysis | [L2][CO1] | [6M] | | 8 | Discuss Representations and Understanding in NLP | | [L2][CO1] | [12M] | | 9 | Illustrate Organization of Natural language Under standing Systems | | | [12M] | | 10 | Dis | criminate Linguistic Back ground: Anoutline of English Syntax. | [L4][CO1] | [12M] | # UNIT – II Grammars and Parsing | 1 | a) | Write about Top-Down Parsers? | [L1][CO2] | [2M] | |----|------------|--|-----------|-------| | | b) | Define Lexicons. | [L1][CO2] | [2M] | | | c) | What is ATN? | [L1][CO2] | [2M] | | | d) | What is Bayes Rule? | [L1][CO2] | [2M] | | | e) | What are the basic issues in parsing? | [L1][CO2] | [2M] | | 2 | a) | Define grammar in NLP, list and explain types of grammar. | [L2][CO2] | [6M] | | | b) | Examine Context free grammar in NLP | [L3][CO2] | [6M] | | 3 | a) | What is parsing? Explain with Features in NLP? | [L2][CO2] | [6M] | | 3 | b) | Dissect Different types of Parsers and explain them? | [L4][CO2] | [6M] | | 4 | | cribe top down parser and explain the working with example | [L2][CO2] | [12M] | | 5 | | ise bottom up parser and explain the process of working with | [L4][CO2] | [12M] | | | | mple | | | | | a) | Illustrate Transition Network Grammars | [L3][CO2] | [6M] | | 6 | b) | Differentiate Transition Network Grammars, Augmented | [L4][C02] | [6M] | | | ĺ | Transition Networks | | | | 7 | a) | Justify Feature Systems and Augmented Grammars | [L5][CO2] | [6M] | | | b) | Classify Morphological Analysis and the Lexicon in NLP | [L4][CO2] | [6M] | | | a) | Discriminate Augmented Transition Networks explain with | [L5][CO2] | [6M] | | 8 | | example | | | | | b) | Dissect the Parsing with Features | [L4][CO2] | [6M] | | 9 | a) | Generalize Bayees Rule, examine with example | [L6][CO2] | [6M] | | | b) | Construct Shannon game with example | [L6][CO2] | [6M] | | 10 | Exa | mine Entropy and Cross Entropy in NLP | [L3][CO2] | [12M] | ### UNIT – III Grammars for Natural Language | 1 | a) | What is probabilistic lexicalized CFG? | [L1][CO3] | [2M] | |----|--|--|-----------|-------| | | b) | Define Reference resolution. | [L1][CO3] | [2M] | | | c) | What is a human preference in parsers? | [L1][CO3] | [2M] | | | d) | What is shift reduce parsers. | [L1][CO3] | [2M] | | | e) | Explain about relative clauses? | [L1][CO3] | [2M] | | 2 | a) | Explain why formal grammars are important in Natural Language Processing (NLP). Give two practical applications where grammars are used. | [L2][CO3] | [6M] | | | b) | Discuss the role of formal grammars in natural language processing.
Compare context-free grammars with dependency grammars | [L2][CO3] | [6M] | | 3 | | sect wh-movement with an example. Why does it pose challenges for sers? | [L4][CO3] | [12M] | | 4 | | t and explain the different forms of movement phenomenon in natural guage with suitable examples. | [L2][CO3] | [12M] | | 5 | a) | What is gap threading in natural language parsing? Explain with an example how it helps in handling movement phenomena like whquestions. | [L2][CO3] | [6M] | | | b) | Discuss the role of gap threading in resolving filler-gap dependencies. Why is it important for computational models of grammar? | [L2][CO3] | [6M] | | 6 | atta | namine the principles of human parsing preferences, such as minimal achment and right association. How do these preferences help explain den-path sentences? | [L3][CO3] | [12M] | | 7 | classify the working of a shift-reduce parser with a suitable example. Why is it called a bottom-up parsing technique? | | | [12M] | | 8 | Justify common parsing conflicts in shift-reduce parsers? Illustrate with examples | | | [12M] | | 9 | Illustrate deterministic parser? How does it differ from a nondeterministic parser? Give one example. | | [L3][CO3] | [12M] | | 10 | | vise the advantages and limitations of deterministic parsers in Natural aguage Processing (NLP). | [L6][CO3] | [12M] | Course Code: 23CS0540 ### UNIT-IV Semantic Interpretation, Language Modelling | a) | What is semantic interpretation in natural language processing. | [L1][CO4] | [2M] | |----|--|--|--| | b) | What is a proposition in logical form. | [L1][CO4] | [2M] | | c) | What is the role of parentheses in encoding ambiguity. | [L1][CO4] | [2M] | | d) | How is language modelling important in speech recognition. | [L1][CO4] | [2M] | | e) | What is dynamic adaptation in language modelling. | [L1][CO4] | [2M] | | a) | Explain how semantic representation aids in computational processing of language. | [L2][CO4] | [6M] | | b) | Examine the challenges of word sense disambiguation in computational semantics. | [L3][CO4] | [6M] | | a) | Discuss methods used to resolve lexical ambiguity using context. | [L2][CO4] | [6M] | | b) | Minimize how predicate logic is used to represent natural language sentences. | [L6][CO4] | [6M] | | a) | Illustrate how ambiguity in natural language can be captured using multiple logical forms. | [L3][CO4] | [6M] | | b) | Devise examples of ambiguity and their logical encodings. | [L4][CO4] | [6M] | | a) | Discriminate how states and events are encoded in logical form. | [L4][CO4] | [6M] | | b) | Express the importance of the matic roles in semantic representation. | [L6][CO4] | [6M] | | a) | Justify the classification of speech acts and their semantic interpretation. | [L5][CO4] | [6M] | | b) | Prioritize the role of model theory in defining sentence meaning. | [L5][CO4] | [6M] | | a) | Dissect the role of language models in speech recognition and machine translation. | [L4][CO4] | [6M] | | b) | Classify how an n-gram language model is constructed and used. | [L4][CO4] | [6M] | | a) | Describe various techniques used for adapting language models to new domains. | [L2][CO4] | [6M] | | b) | Compare traditional n-gram models with neural network-based models like RNN and Transformer. | [L5][CO4] | [6M] | | | | [L6][CO4] | [12M] | | | | [L4][CO4] | [12M] | | | b) c) d) e) a) b) a) b) a) b) a) b) Gen GPT Sim | b) What is a proposition in logical form. c) What is the role of parentheses in encoding ambiguity. d) How is language modelling important in speech recognition. e) What is dynamic adaptation in language modelling. a) Explain how semantic representation aids in computational processing of language. b) Examine the challenges of word sense disambiguation in computational semantics. a) Discuss methods used to resolve lexical ambiguity using context. b) Minimize how predicate logic is used to represent natural language sentences. a) Illustrate how ambiguity in natural language can be captured using multiple logical forms. b) Devise examples of ambiguity and their logical encodings. a) Discriminate how states and events are encoded in logical form. b) Express the importance of the matic roles in semantic representation. a) Justify the classification of speech acts and their semantic interpretation. b) Prioritize the role of model theory in defining sentence meaning. a) Dissect the role of language models in speech recognition and machine translation. b) Classify how an n-gram language model is constructed and used. a) Describe various techniques used for adapting language models to new domains. b) Compare traditional n-gram models with neural network-based models like | b) What is a proposition in logical form. c) What is the role of parentheses in encoding ambiguity. d) How is language modelling important in speech recognition. [L1][C04] e) What is dynamic adaptation in language modelling. [L1][C04] a) Explain how semantic representation aids in computational processing of language. Examine the challenges of word sense disambiguation in computational semantics. a) Discuss methods used to resolve lexical ambiguity using context. [L2][C04] b) Minimize how predicate logic is used to represent natural language sentences. [L6][C04] a) Discuss methods used to resolve lexical ambiguity using context. [L2][C04] b) Minimize how predicate logic is used to represent natural language [L6][C04] a) Discissininate how ambiguity in natural language can be captured using multiple logical forms. [L4][C04] a) Discriminate how states and events are encoded in logical form. [L4][C04] b) Express the importance of the matic roles in semantic representation. [L6][C04] a) Justify the classification of speech acts and their semantic interpretation. [L5][C04] a) Dissect the role of model theory in defining sentence meaning. [L5][C04] a) Dissect the role of language models in speech recognition and machine translation. [L4][C04] a) Describe various techniques used for adapting language models to new domains. [L4][C04] b) Compare traditional n-gram models with neural network-based models like RNN and Transformer. Generalize the working of a Transformer-based language model like BERT or GPT. Simplify how tokenization and sub word modelling help in language-specific | $\label{thm:continuous} \textbf{UNIT-V}$ Machine Translation, Multilingual Information Retrieval, Multilingual Automatic Summarization | | a) | What is structural ambiguity in MT. | [L1][CO5] | [2M] | |----|----|--|-----------|-------| | | b) | What was the impact of ALPAC report on MT. | [L1][CO5] | [2M] | | 1 | c) | What is the main advantage of neural machine translation. | [L1][CO5] | [2M] | | | d) | Define stemming and give an example. | [L1][CO6] | [2M] | | | e) | Name any two dataset that contains summaries in multiple languages. | [L1][CO6] | [2M] | | • | a) | Express the importance of machine translation in the modern multilingual world. | [L6][CO5] | [6M] | | 2 | b) | Describe the input-output process of a basic MT system. | [L2][CO5] | [6M] | | 3 | a) | Dissect major linguistic challenges (ambiguity, context, syntax differences) in machine translation. | [L4][CO5] | [6M] | | | b) | Examine brief history of Machine translation, with possible approaches. | [L3][CO5] | [6M] | | 4 | a) | Describe the background and motivation for developing the Anusaraka system. | [L2][CO5] | [6M] | | 4 | b) | Examine how the Anusaraka system differs from traditional MT systems. | [L3][CO5] | [6M] | | 5 | a) | Classify document pre-processing in Multilingual Information Retrieval | [L4][CO6] | [6M] | | 3 | b) | Prioritize Monolingual Information Retrieval in Multilingual Information Retrieval | [L4][CO6] | [6M] | | | a) | Evaluate the Evaluation in Information Retrieval | [L5][CO6] | [6M] | | 6 | b) | Maximize Tools, Software and Resources in Multilingual Information Retrieval | [L6][CO6] | [6M] | | 7 | a) | Classify CLIR with example. | [L4][CO6] | [6M] | | 7 | b) | Justify MLIR and explain with any one example | [L5][CO6] | [6M] | | o | a) | Define Multilingual Automatic Summarization, explain with examples | [L2][CO6] | [6M] | | 8 | b) | Develop different approaches for Multilingual Automatic Summarization | [L2][CO6] | [6M] | | 9 | Ge | eneralize summarization, explain with approaches and benefits of summarization | [L6][CO6] | [12M] | | 10 | a) | Dissect Manual Evaluation Methodologies in summarization | [L4][CO6] | [6M] | | 10 | b) | Devise Automated Evaluation Methodologies in summarization | [L4][CO6] | [6M] | Prepared By Dr. N.Babu ,Associate Professor, Dept of CSE